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The method of non-paired spatial orbitals (NPSO) is applied to the n-electron systems of naph- 
thalene and azulene. Calculations are made without spin projection and with the annihilation of the 
triplet component. The method leads to a substantial lowering of the energy for both molecules and for 
azulene the one parameter NPSO function gives results similar to the much more complicated alternant 
molecular orbital method. A form of NPSO wavefunction which can be used with modest effort is 
proposed. It is shown that the NPSO wavefunctions for these molecules can be reasonably written using 
a parameter deduced from calculations on smaller systems. 

Die Methode der ungepaarten raumlichen Orbitale (NPSO) wird auf das n-Elektronensystem 
des Naphthalins und des Azulens angewendet. Die Berechnungen werden ohne Spinprojektion durch- 
gefiihrt; die Tripletkomponente wird beseitigt. Die Methode fiihrt zu einer bedeutenden Verringerung 
der Energie fiir beide Molekfile; ffir Azulen ergibt die NPSO-Funktion mit einem Parameter ~ihnliche 
Ergebnisse wie mit der weit aufwendigeren Methode der alternierenden Molekfilorbitale. Es wird eine 
Form der NPSO-Wellenfunktion vorgeschlagen, die mit geringem Aufwand beuutzt werden kann. 
Es wird gezeigt, dab die NPSO-Wellenfunktion fiir die genannten Molekiile mit Hilfe eines Parameters 
dargestellt werden kann, der aus Berechnungen an kleineren Systemen stammt. 

1. Introduction 

A n  effective way  of ca lcula t ing  molecu la r  wavefunct ions  which m a k e  al low- 
ance for e lec t ron cor re la t ion  is to use the m e t h o d  of"dif ferent  orb i ta l s  for different 
spins" ( D O D S )  in which e lect rons  of  ~ and  fl spins are assigned to spa t ia l ly  
different orb i ta l s  [1]. However ,  depa r tu re  f rom d o u b l y  filled orb i ta l s  does  mean  
tha t  a spin eigenfunct ion can no  longer  be wri t ten as a single Slater  de te rminant .  
The  unres t r ic ted  H a r t r e e - F o c k  m e t h o d  [2] overcomes  this p r o b l e m  by minimis ing  
the energy of  a single de t e rminan t  in which electrons of  different spins occupy  
different orbi ta ls  and  then, if required,  genera t ing  a spin eigenfunct ion by  the use 
of  a p ro jec t ion  o p e r a t o r  [1]. This  p rocedure  has been cri t icised on the g rounds  
tha t  after p ro jec t ion  the wavefunct ion will not  necessar i ly  co r r e spond  to an 
energy m i n i m u m  [3].  A more  sat isfactory,  but  much  more  difficult p rocedure  is 
the ex tended  or  p ro jec ted  H a r t r e e - F o c k  m e t h o d  in which a spin eigenfunct ion 
is genera ted  first and  the energy then op t imised  [-1]. 

In  view of  the grea t  difficulty of  ca lcula t ing  o p t i m u m  D O D S  wavefunct ions  
there has been much  interes t  in me thods  for which it is poss ib le  to work  with a spin 
eigenfunct ion and  to  op t imise  the  energy with respect  to a smal l  number  of ad-  
jus t ab le  parameters .  The  a im of  such work  is to  ob ta in  wavefunct ions  which 
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approximate closely to those which would be obtained by a complete configuration 
interaction (CI) calculation. As the number of electrons considered increases, 
the number of configurations to be included in a CI calculation rapidly becomes 
unmanageable. Because of the slow convergence of CI methods and of the fact that 
it is not easy to select the most important contributions to the wavefunction, 
alternative methods for including electron correlation are desirable. 

Two such methods are the "alternant molecular orbital" method (AMO) 
introduced by L6wdin [1] and reviewed in detail by Pauncz [4] and the method 
of"non-paired spatial orbitals" (NPSO) suggested by Linnett and his co-workers 
[5-8]. I t  is relatively easy to perform complete CI calculations for molecules 
containing up to six electrons and it is therefore possible to assess how closely 
the DODS wavefnnctions approximate to the CI calculation. The AMO and 
NPSO methods both give energies close to the CI energies for these small systems. 
For example, in the case of benzene, the AMO method [9] gives 90 % of the energy 
depression obtained by the complete CI calculation [103 and the NPSO method 
[6] gives 97 % of the lowering. In general the NPSO method seems to be superior 
for systems containing up to six electrons [43. Both methods work well for 
delocalized systems and for benzene the results are much better than those 
obtained by the separated pair calculation of Ebbing and Poplawski [20] which 
only gave 64 % of the energy lowering of the complete CI calculation. 

The AMO method has recently been shown to be successful for the ten electron 
systems of naphthalene [11] and azulene [123 and the results of preliminary 
NPSO calculations on naphthalene [8] were encouraging. This paper presents 
the application of the NPSO method to azulene and more extensive calculations 
on naphthalene. This work has two aims: Firstly we wish to investigate the fea- 
sibility of applying the NPSO method to larger systems and to evaluate its 
performance. Secondly, Empedocles and Linnett [7] showed that for several 
hydrocarbon n-electron systems the energy is minimised when the adjustable 
parameter k is in the region of 4 and that no serious errors would be introduced 
by assuming k = 4 for the systems they considered. It is of interest to see if this 
value of k can also be used for these ten electron systems. 

2. Method 

The basis of the NPSO method is that a single determinantal wavefunction 
is formed by assigning electrons as far as possible to semi-localized bonding 
orbitals, which are usually combinations of two atomic orbitals from adjacent 
atoms, in such a way as to span the bonding regions of the molecule. As far as 
possible the spins are assigned so that electrons in adjacent semi-localized bonding 
orbitals have opposite spins. 

For naphthalene and azulene the wavefunctions are constructed from the 
2pn orbitals Z~ located on the carbon atoms. The numbering schemes for both 
molecules are indicated in the figure. 

8 1 2 4 5 

1 6 

15 3 

5 4 1 0  8 7 
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As will be apparent from the subsequent discussion the calculation would 
be very much easier if the initial single determinantal wavefunction had the 
symmetry of the molecule. Unfortunately the preliminary calculations on 
naphthalene [8] indicated that a symmetrical starting determinant is not suffi- 
ciently flexible. Previous work suggests that we should use the following initial 
single determinantal NPSO wavefunctions for these molecules: 

Naphthalene 

1Pl = A[( ; (1  + k;(2)0r (;(3 + k;(4)e (;(lo + k;(5)~ (Z6 '{- k;(7)~x 

(X8 + kz9) ~ (;(2 + k Z3)fl (;(4 + k;(lo)fl (;(5 + k;(6)f l  (1) 

(;(7 + k;(s)fl (;(9 + k ;(1)fl] , 

Azulene 

~Pl = A[(Za + kz2)~ (;(3 + k;(,)~ (;(5 + k;(6)~ (;(7 + k;(s)a 

(;(9 + k Z l o )  ~x (;(2 + k;(3)fl (;(4 "4- kzs)fl (;(6 -[- k;(v)fl (2) 

(;(8 + kz9)fl (;(lO "4- k;(1)fl], 

where A is the antisymmetrizer and k is a parameter to be varied to optimise the 
energy. 

However determinantal wavefunctions constructed in this way are not satis- 
factory because they are not spin eigenfunctions and do not transform as one of the 
irreducible representations of the point group of the molecule. A wavefunction 
having the correct symmetry may be generated by the application of a symmetry 
projection operator [13] pU) 

lj 
pU) = ~_ ~ [ZU)(R)], PR (3) 

where j labels the irreducible representation, lj is the dimensionality of the 
representation, h is the order of the group and ;(U)(R) is the character of the group 
operator PR for the fh irreducible representation. Applying the operator for the 
Alo representation to the naphthalene wavefunction (1) gives 

1D = [1~i At- 1DI I - -  l])ii I - -  1DIV] , (4) 
where 

lp~ = A [(k yl -]- ;(2) 0~ (k;( 3 + ;(4-) 0r (kz~ o -F Zs) 

(kz6 + Z7) cx (kzs + Z9)0r (kz2 + ;(3)fl 

(kz4+;(lo)fl (k;(5 +;(6)fl (k;(7 +;(s)fl 

(k;(9 -~- ; (1)f l ]  

(5) 

and lPlli and ~&v are obtained from ~D I and ~p. respectively by interchanging 
and fl spins. 

For azulene the application of the symmetry projection operator for the A 1 
representation gives 

lp = ~/)I - -  '[DIV , (6) 
21" 
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where 
~Piv = A[(kz1 + Z2)fl (kx3 + ;(4-)/? (kz5 + Z6)fl (kz7 + ,Zs)fl 

(kz9 -t- )~lO)fl (kx2 -t- Z3)~ (k)~ 4 -t-- Zs)~ (7) 

(kz6 + zT)~ (kzs + Z9)~ (kZ~o + z~)~]. 

A spin eigenfunction can then be generated by the application of a spin 
projection operator [1]. The singlet wavefunction lps for the Axo state of naph- 
thalene or the A1 state of azulene can now be written as 

q's = o , ( ~  + ~ i0 ,  (8) 

where Os is a singlet projection operator. (~Pm and l&v are, in fact, included in the 
spin projection of ~PI and lpl I respectively.) The energy is given by 

E -- <(~' + q~.) I H I Os(q,~ + 1~ii)> (9) 
<(tp, + ~Vii)] Os (~P, + ~/)II)> 

because the spin projection operators are idempotent and commute with the 
Hamiltonian. 

For the ten electron case ~p~ is now a linear combination of 504 Slater deter- 
minants. There are well established methods [4, 14-16] for calculating the 
energy of a wavefunction generated by the application of a spin projection 
operator to a single determinant provided that the orbitals have been trans- 
formed to the "corresponding orbitals" of Amos and Hall [17] or the "paired 
orbitals" of L6wdin [18]. If u i and v i are transformed orbitals containing electrons 
of ~ and fl spins respectively in the unprojected determinant, they satisfy the 
orthogonality conditions. 

<uiluj> = <vl Iv j> = ,~ij 
and (10) 

where 6~j is the Kroenecker 6. This transformation is readily applied to ~PI and ~ii 
and the contributions to the energy from (tpiIHlOslp~> and <IPii[HlOs~pn > are  

thus easily calculated. Unfortunately there is no easy way of calculating the integral 
<~vx]H[Ovpn) where ~Pl and ~Pn are determinants with different spatial parts 
having no particular orthogonality relationships between them. This is the major 
difficulty in the application of the NPSO method. 

The unprojected wavefunctions ~p are in effect combinations of wavefunctions 
of all the possible multiplicities allowed for the number of electrons under 
consideration. The effect of the spin projection operator is to remove the unwanted 
multiplicities - triplets, quintets etc. to give a singlet function. If one is interested 
in the singlet state, the major contaminating species is the triplet and Amos and 
Hall [17] suggested that the annihilation of the triplet state would be a good 
approximation to full projection. Making the further assumption, which is not 
quite valid, that the spin annihilation operator is idempotent, the calculation of 
<~Pt[ H ] O sl&I > reduces to <~)I] H [ A s + x IPII> where A s + 1 is an operator annihilating 
the component with spin quantum number s +  1 from the wavefunction. 
As+ ~ (~P~I- ~V~v) is a combination of 52 determinants and it is feasible to calculate 
this integral directly using the method of King et  aI. [19] for each individual 
integral in the expansion. 
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We have used a modification of this idea. Following L6wdin [23], the function 
~Pl can be represented by [~5] [fls] where it is understood that the first five spatial 
orbitals contain electrons of ~ spin and the last five electrons of fl spin. ( -  ~l)ili) is 
similarly represented by [fls] [~5] with the same convention regarding the spatial 
orbitals. The effect of the singlet projection operator Os on ~PI is written 

5 
os i = E c(0, k) rk, 

k=O 

where Tk = [ct 5 -kflk] [~kfl5-k] and represents all possible determinants for which 
there are ( 5 -  k)~ spins and k fl spins among the first five spatial orbitals and 
k ~ spins and (5 - k) fl spins among the last five spatial orbitals and the coefficient 
C(0, k) for the 10 electron case is given by 

c ( 0 ,  k) = ( -  1) . 

Instead of applying the annihilation operator A~+ 1 to 0Pl-  ~Pu) we have simply 
omitted the terms T2 and T3 from the expression Q~PI. Thus we have included 
the same terms that would be given by annihilation of the triplet component but 
with the coefficients given by spin projection. This function will be written as A'~ + d&. 
The method of Pauncz [-4] was used to calculate 

(IPilHlA's+l lpi) and (lPiilHJA's+11t)ii). 

Calculations were also made with the unprojected function ~p (Eq. (4)) for 
naphthalene and a function derived from the unprojected azulene function (6) 
by including the determinants obtained by exchanging ~ and fl spins. 

We assumed the same geometries as Pauncz and his coworkers for naphthalene 
[11] and azulene [4] and used the integrals tabulated in their work so that our 
results are directly comparable with theirs. The integrals were calculated by the 
method of Ruedenberg [-21]. 

3. Results 

a) Naphthalene 

The results of the NPSO calculations described above for the naphthalene 
molecule are in Table 1 along with the results of Silberman and Pauncz [11]. 
The unprojected NPSO energy reported previously [8] was, unfortunately, found 
to be in error. The correct value is reported in Table 1. Annihilation of the triplet 
component is seen to improve the energy somewhat but the result is disappointing 
compared with the AMO results, although the NPSO energies are considerably 
lower than that given by the MO method. Further improvement might be expected 
for full spin projection. In order to get an indication of any possible further 
lowering we calculated the energy 

(wIIH[ Oswi) + (wIIHIA's+xWII) 
E x = (11) 

(1~I I Os ~l)I) "~- ( IDI J At  + 1 ~)i i)  
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Tab le  1. Energies for wavefunctions for naphthalene 

M e t h o d  Energy  (eV) k 

S C F - L C A O - M O  a - 494.4805 
Unpro j ec t ed  N P S O  - 497.1048 0.2482 
N P S O  wi th  ann ih i l a t i on  - 4 9 7 . 7 2 3 4  0.214 
of t r ip le t  c o m p o n e n t  ( - 497.6699 0.25) 
N P S O  E 2 - 497.9909 0.221 

( - 4 9 7 . 9 4 4 9  0.25) 
N P S O  E 1 - 4 9 8 . 0 8 9 6  0.215 

( - 4 9 8 . 0 3 3 8  0.25) 
A M O  1 p a r a m e t e r  a - 498.5394 
A M O  5 p a r a m e t e r  a - 499.5259 

a Ref. [11]. 

This is seen to lower the energy by a further 0.35 eV with the value of k remaining 
approximately the same. 

In view of the fact that the calculation of (w~IHIA'~ + 1 WII) is time consuming, 
we considered the possibility of calculating the energy by 

( w I [ H I Q w I )  + (wIIHIwII )  - ( w i [ n l w i v )  
e :  = (12) 

(~~ O~~ + (~~ W,I) - (Wil~&v) 

Table 1 shows that this procedure yields an energy close to the minimum of E 1 , 
although the value of k does shift slightly. We can, therefore, suggest that this 
is a reasonable way of doing the calculation without excessive computation. 

In view of the disappointing performance of the one parameter NPSO function 
we investigated the effect of introducing a second parameter into the wavefunction. 
Two alternative schemes were explored with unprojected functions. Firstly, the 
same parameter kl was used for bonds 12, 23, 34, 56, 67 and 78 and k2 for bonds 
19, 410, 510 and 89. The energy minimum occurs in the region ofk I = 0.27, k2 = 0.21 
giving an energy of -497.1418 eV. Bond length considerations suggest that a 
better choice would be k 1 for bonds 12, 34, 56 and 89 and k2 for bonds 23,410, 510, 
67, 89 and 19. However, the improvement was insignificant. For  k, = 0.29, k 2 = 0.22 
the energy obtained was -497.1520eV. Thus the energy lowerings were not 
sufficient to suggest that it would be worth introducing a second parameter in 
this way. 

The most probable reason for the poor  performance relative to the AMO 
method is that the NPSO method does not explicity consider the 9-10 bond 
which is comparable in length to the 1-9 and 2-3 bonds. A comparison of the first 
order density matrices for the unprojected NPSO function and the AMO wave- 
function (Table 2) indicates that the NPSO method gives a poor  description of the 
electron distribution in the 9 -10  bond. 

In these calculations k can be replaced by 1/k and the figures in Table 1 show 
that the energy is minimised for values ofk  close to 0.25. Energy values for k = 0.25 
are shown in parentheses and are seen to be close to the minimum. Thus it is 
apparent that the value of k = 4 suggested by Empedocles and Linnett [7] is also 
applicable in the case of naphthalene. 
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Table 2. First order density matrix for naphthalene 

Unprojected NPSO AMO (5 parameters) 
(k = 0.2482) 

11 0.9039 0.8355 
22 0.9016 0.8703 
99 0.9109 0.9426 
12 0.2072 0.3763 
23 0.2078 0.1311 
19 0.2096 0.1378 

910 -0.0178 0.2803 

b) Azulene  

Table 3 contains the results of the energy calculations for azulene along with 
the results of Pauncz [4] and Silberman, Gershgorn and Pauncz [12] obtained 
by the AMO method. As we were not able to obtain exact agreement with the 
MO energy and eigenvectors of the overlap matrix obtained by Pauncz and his 
coworkers, we include the MO energy obtained in this work along with our 
SCF-LCAO-MO energy. The SCF orbitals are given in Table 4. The alternant 
molecular orbitals of Silberman et al. were constructed from the eigenvectors of 
the overlap matrix. 

The Coulson-Rushbrooke theorem does not apply to non-alternant systems. 
However, the AMO method is applicable to such systems if the alternant molecular 
orbitals are constructed by taking combinations of bonding and antibonding 
orbitals having the same symmetry in such a way as to localise the two groups of 
AMO on different sets of atoms in the molecule. The calculations reported by 

Table 3. Energies of  wavefunctions for azulene 

Method Energy (eV) k 

MO (Eigenvectors of overlap matrix) 

Pauncz b -- 490.0192 
Silberman et al. a -- 490.0606 
This work - 490.0134 

SCF-LCAO-MO - 490.7623 

AMO (1 parameter) b -- 491.9428 
AMO (5 parameters t b - -  493.1266 
Unprojected NPSO - 494.4050 
NPSO (22) - 495.2340 

( - 495.2050 
Optimized AMO a - 495.3652 
Annihilated NPSO - 495.5472 

( -  495.5230 
NPSO ( E 0  - 495.8820 

(-495.8516 

a R e E  [ 1 2 ] .  

b ReE [4]. 

0.2555 
0.2273 
0.25) 

0.23 
0.25) 
0.228 
0.25) 
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Table 4. SCF-LCAO molecular orbitals for azulene 

1 b 2 0.0232 0.0645 0.2095 0.2738 0.3446 0.3853 
2 a 2 0.0 0.1841 0.3242 0.3914 0.2990 0.0 
3 b 2 0.2620 0.2677 0.3427 0.0902 -0.2143 -0.3433 
4 b 2 0.5916 0.3018 -0.2952 -0.1941 0.1016 0.2490 
5 a 2 0.0 0.4164 0.3505 -0.1517 -0.4090 0.0 
6 b2 0.2983 -0.0729 -0.3549 0.4996 0.1355 -0.5568 
7 a 2 0.0 0.4476 -0.2188 -0.3961 0.4753 0.0 
8 b2 0.6005 -0.4522 0.0714 0.2274 -0.4600 0.5532 
9 a 2 0.0 -0.3778 0.6673 -0.4914 0.2622 0.0 

10 b 2 0.5186 -0.4522 0.3005 -0.3818 0.4299 -0.4477 

Pauncz  [4]  were m a d e  in this way. Subsequen t  work  has shown tha t  this is no t  
necessar i ly  the best  m e t h o d  because  one, can take  l inear  c omb ina t i ons  of  the 
a n t i b o n d i n g  orb i ta l s  of  a pa r t i cu l a r  s y m m e t r y  before  forming  the A M O ,  Silber-  
m a n  et al. [12] found  the o p t i m u m  un i t a ry  t r ans fo rma t ions  of  the a n t i b o n d i n g  
orb i ta l s  as well as op t imis ing  the energy with respect  to  the usual  A M O  pa ra -  
meters.  This  ca lcu la t ion  is referred to as the "op t imised  A M O  m e t h o d "  in Table  3. 

The  results  in Table  3 show tha t  for azulene the pe r fo rmance  of  the N P S O  
m e t h o d  is very g o o d  and  tha t  a one p a r a m e t e r  wavefunct ion compares  very well 
with the  ra the r  compl i ca t ed  A M O  wavefunct ion  of  S i lberman  et al. [12] which 
involves two un i t a ry  t r ans fo rma t ions  a m o n g  the a n t i b o n d i n g  orb i ta l s  and  five 
non- l inea r  pa r ame te r s  mix ing  the b o n d i n g  and  a n t i b o n d i n g  orbi ta ls .  

Aga in  the  energy m i n i m a  are  given by  values  of  k close to 0.25. The  energies 
for k = 0.25 are given in parentheses .  The  a s sumpt ion  of  a value of  k of  0.25 would  
no t  i n t roduce  any  ser ious  er rors  in to  the  calcula t ion.  

It is of interest  to cons ider  why the N P S O  m e t h o d  should  be re la t ively  bet ter  
for azulene than  for naph tha lene .  The  first o rde r  dens i ty  ma t r ix  for the unpro jec ted  
N P S O  funct ion is given in Tab le  5 and  shows tha t  the N P S O  wavefunct ion  is 

Table 5. First order density matrix for azulene 

Unprojected Optimized AMO 
NPSO (k = 0.2555) 

11 0,9021 0.8516 
22 0.9057 0.9626 
33 0,9354 0.8308 
44 0,8989 0.7934 
55 0,9001 0.8481 
66 0.8964 0.8040 

12 0.2098 0.2934 
23 0,2190 0.2143 
34 0.2155 0.3242 
45 0.2125 0.3450 
56 0.2113 0.3008 
39 -0.1693 0.0713 
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antibonding for the 3 -9  bond. However, this is the longest bond in the molecule 
(1.483 A) and is considerably longer than the next longest bond (2-3) (1.413 A). 
It would thus appear that the 3 -9  bond has much less n-bond character than the 
9-10 bond in naphthalene. The length of a "pure" sp  2 - sp  2 single bond has been 
the subject of some controversy [22] but one may say that it is in the region of 
1.50 A. Thus in the case of azulene, it is reasonable to suppose that the lack of 
explicit consideration of the bridge bond will be less serious that in the case of 
naphthalene. 

We also used the energy expressions E t and E z  (Eqs. (11) and (12) respectively) 
and obtained results similar to those for naphthalene. Including full spin projection 
of ~PI again lowers the energy by about 0.35 eV. Satisfactory results can be obtained 
by the use of expression E z .  

4. Conclusions 

Even though we have not performed NPSO calculations with fully spin 
projected wavefunctions, we conclude that the method is successful for these ten 
electron systems. Full spin projection would not lower the energy appreciably. 
The fact that the value of k is virtually the same for the annihilated calculation 
and energy expressions (11) and (12) suggests that the optimum value of k for Eg 
will give a minimum energy (or very close to it) for the fully projected function. 
In view of the difficulties of performing fully spin projected calculations, we 
suggest that the use of (Os~vi)+ ~v u -  ~iv is a very reasonable approximation. 

The results for azulene are particularly good compared with the AMO 
calculations [121 which involve many more adjustable parameters. 

For  both naphthalene and azulene the energy is minimized for values of k 
close to 0.25. Thus these molecules follow the pattern observed by Empedocles 
and Linnett [71 and our results support their assertion that it is possible to write 
accurate NPSO wavefunctions for the ground states of complex molecules without 
performing laborious energy calculations. 

Our calculations and previous applications of the NPSO method suggest 
that this is a good way of calculating correlated wavefunctions for delocalized 
systems. 
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